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Rubeń Esteban,*,† Garikoitz Aguirregabiria,† Andrey G. Borisov,‡ Yumin M. Wang,⊥ Peter Nordlander,⊥

Garnett W. Bryant,§ and Javier Aizpurua*,†

†Centro de Física de Materiales, Centro Mixto CSIC-UPV/EHU and Donostia International Physics Center (DIPC), 20018
Donostia-San Sebastiań, Spain
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ABSTRACT: The optical response of a plasmonic gap-
antenna is mainly determined by the Coulomb interaction of
the two constituent arms of the antenna. Using rigorous
calculations supported by simple analytical models, we observe
how the morphology of a nanometric gap separating two
metallic rods dramatically modifies the plasmonic response. In
the case of rounded terminations at the gap, a conventional set
of bonding modes is found that red-shifts strongly with
decreasing separation. However, in the case of flat surfaces, a
distinctly different situation is found with the appearance of two sets of modes: (i) strongly radiating longitudinal antenna
plasmons (LAPs), which exhibit a red-shift that saturates for very narrow gaps, and (ii) transverse cavity plasmons (TCPs)
confined to the gap, which are weakly radiative and strongly dependent on the separation distance between the two arms. The
two sets of modes can be independently tuned, providing detailed control of both the near- and far-field response of the antenna.
We illustrate these properties also with an application to larger infrared gap-antennas made of polar materials such as SiC. Finally
we use the quantum corrected model (QCM) to show that the morphology of the gap has a dramatic influence on the plasmonic
response also for subnanometer gaps. This effect can be crucial for the correct interpretation of charge transfer processes in
metallic cavities where quantum effects such as electron tunneling are important.

KEYWORDS: optical antennas, plasmonic gaps, cavity modes, antenna modes, quantum effects, quantum corrected model,
plasmonic resonances, phononic resonances

Metallic particles can show a strong optical response due
to the excitation of resonant plasmonic modes, making

light manipulation possible in structures of dimensions
comparable to or smaller than the wavelength. Typical effects
are the efficient emission of radiation and the concentration of
the incoming light energy in small volumes, thus justifying the
characterization of these metallic structures as optical
antennas.1,2 Modifications of the geometry, size, or materials3−6

affect the optical response. In particular, the resonant modes of
optical antennas consisting of two metallic particles separated
by a narrow gap show significant sensitivity to the properties of
the gap.7−19

In an optical antenna, a change in geometry can
simultaneously affect both the strength and wavelength of its
resonances and modify both the far- and near-field response. It
is usually a challenge, for example, to control the near field
without affecting the far-field properties. In this theoretical
work, we discuss how the coexistence20,21 of two different and
mostly spectrally decoupled types of modes in flat-gap
antennas, namely, transverse cavity modes22 and longitudinal

antenna modes,15 allows for a more flexible tuning of far- and
near-field properties compared to that of the conventional
spherical-gap terminations13,17,23 The importance of the gap
morphology24 is particularly pronounced for nanometer- and
subnanometer-sized gaps, where strong interactions are present.
We find a similar effect at larger separation distances for
phononic antennas made of SiC.25 For gaps smaller than about
half a nanometer, electron tunneling becomes a relevant
process, affecting the optical response of metallic gap-
antennas.26−31 We investigate this effect using the quantum
corrected model (QCM)32 and find that the effects of tunneling
also depend on the structure of the antenna gap. The
pronounced dependence of the plasmonic response on the
gap morphology shows that gap engineering is a promising tool
for precise control of both the far- and near-field properties of
subwavelength antennas.
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■ GAP-ANTENNA MORPHOLOGY
To understand the effects of the gap morphology on the
plasmonic response, we consider two types of nanoantennas,
depicted in Figure 1. In both cases, the structure consists of two

nanorods as the arms of the antenna, separated by a gap
distance dsep measured between the closest points. Each rod is
of length L and radius R, with a flat termination at the outer
end far from the gap. The shape of the rod terminations at the
gap determines the two types of antennas that we consider. In
spherical-gap antennas (Figure 1a), each rod is terminated at
the gap by a hemispherical cap and the contact is a zero-
dimensional point. In flat-gap antennas (Figure 1b), the
corresponding termination is flat, with a two-dimensional
contact area. The structures are rotationally symmetric with
respect to the z axis and have mirror symmetry with respect to
the z = 0 plane. The center of the gap corresponds to x = y = z
= 0. The radii of all flat ends are R′ = R − r, with r being a small
edge rounding that prevents unrealistically sharp edges. When
the flat-gap antenna is in contact (dsep = 0), a small indentation
occurs at the center of the antenna, but this indentation has no
significant effect on the optical response under study.
The structure is placed in a vacuum, with permittivity ε0, and

is illuminated with light of angular frequency ω, or equivalently
wavelength λ, by a plane wave propagating along x and with
electric field of amplitude E0 polarized along the rod axis z. We
focus on metallic rods with L = 100 nm, R = 25 nm, and r = 2
nm, except in the section where SiC phononic antennas are
considered and in Figure 6, where we vary the length of the
metallic rods. The metal permittivity εm is modeled using a
local Drude model; εm = ε0[ε∞ − ωp

2/(ω(ω + iγ))] with no
dielectric background screening, ε∞ = 1, and plasma frequency
and damping constants ωp = 7.9 eV and γ = 0.09 eV,
respectively. These parameters correspond to a jellium model
of gold and describe reasonably well the Au dielectric values for
large wavelengths. The simple Drude model description

facilitates the interpretation of the modes at large energies,
where d-electron contributions can weaken the plasmonic
resonances for real metals.

■ NANOMETRIC GAP-NANOANTENNAS: SPHERICAL
VERSUS FLAT GAPS

Far-Field and near-Field Optical Response. We first
analyze the local classical optical response of gap-antennas for
gap separations dsep ≥ 0.5 nm. Nonlocal effects are known to
influence the optical response in nanometric gaps,33−38 but the
main trends of the modal structure and spectral dispersion in
nanometric gaps can be described by local theories with a
convenient rescaling of distances of a few ångstroms.39−41 For
the range of gap separations considered, quantum tunneling
effects can be neglected.26,32 Quantum effects for narrower gaps
will be analyzed latter on.
We calculate the far- and near-field response, i.e., the

extinction cross section σext and the maximum field enhance-
ment at the central plane |Emax/E0| (defined as the maximum
amplitude of the field at the central plane z = 0 normalized by
the amplitude of the incident plane wave), by rigorously solving
Maxwell’s equations using the boundary element method
(BEM).42 To diminish edge effects for the flat terminations, we
consider only field enhancements for x2 + y2 < (R − 2r)2.
We show the plasmonic response of spherical-gap antennas

for different gap separations dsep in Figure 2a,c. For large gap

separations, the dominant feature is a broad mode at
approximately λ = 530 nm that can be associated with a
localized surface plasmon in each antenna arm, oscillating along
the antenna axis. We denote such excitations as longitudinal
antenna plasmons (LAPs). As the gap separation decreases, the
results follow the well-known trend for sphere dimers at small
separations.8,10,17,43 The lowest energy LAP turns into a

Figure 1. Schematic of the gap antennas for (a) the spherical-gap and
(b) the flat-gap configurations. The rods forming the antennas are
rotationally symmetric with respect to the z axis. The length of the
rods is L from end to end, and, except at the terminations, each rod
has a radius R. The radius of the spherical cap near the gap in (a) is
also R. The flat ends of the rods at the gap in (b), and at the outer
ends for both (a) and (b), have radius R′ and are rounded at the edge
using a small radius of curvature r; R′ = R − r. The structures are
illuminated laterally, with the electric field of amplitude E0 polarized
along the rod axes and the Poynting vector, indicated by a red arrow,
toward positive x. The center of the gap is at x = y = z = 0, and the
geometry has mirror symmetry with respect to the z = 0 plane. When
metallic antennas are considered, L = 100 nm, R = 25 nm, and r = 2
nm. For phononic SiC antennas L = 1500 nm, R = 375 nm, and r = 30
nm.

Figure 2. (a, b) Extinction cross-section σext and (c, d) maximum near-
field enhancement at the central plane |Emax/E0| for (a, c) spherical-gap
and (b, d) flat-gap linear metallic antennas, as a function of wavelength
and gap separation. The white lines correspond to extinction maxima,
and the black-lines in (d) to the expected position of the transverse
gap cavity modes (m = 1, s = 1) and (m = 0, s = 2, 4, 6) according to
the model given in the text. Notice the logarithmic scale used for the
distances and for the color scale in these figures. The dots in (d)
correspond to the field plots shown in Figure 5. Modes are labeled as
longitudinal antenna plasmons (LAPs), transverse cavity plasmons
(TCPs), and bonding dimer plasmons (BDPs).
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bonding dimer plasmon (BDP) mode, and higher order
bonding resonances appear. All modes red-shift for decreasing
separation distance, and the red-shift diverges (notice the
logarithmic scale for separation distances) for dsep → 0, as a
consequence of the hybridization of modes44 induced by
Coulomb coupling of the charges in the individual arms.
All observed resonances are strongly radiative and lead to

increasingly large near-field enhancement for smaller dsep. As a
consequence, both the extinction cross-section σext (Figure 2a)
and the maximum local field enhancement |Emax/E0| (Figure 2c)
exhibit similar modal structure and dispersion. For very short
dsep, the field enhancement, produced by a large charge density
at the apex of the rods, is confined to a very small volume
within the center of the gap.17,27,45

The evolution of the optical spectra of flat-gap antennas as a
function of separation, shown in Figure 2b,d, is strikingly
different. The main feature in the extinction cross-section of
Figure 2b is a broad peak appearing in the wavelength range λ
≈ 575 nm to 830 nm. Additional narrow peaks at λ ≈ 340 nm
and λ ≈ 280 nm are also found. These three modes can be
understood as LAP resonances that behave as coupled Fabry−
Peŕot-like resonances of the individual rods for plasmons
propagating along the longitudinal z direction.46−49 The
coupling does not significantly affect the spectral positions of
the two narrow LAP peaks at higher energy, but leads to a
significant red-shift with decreasing dsep of the dominant, lowest
energy LAP. Critically, and in contrast with the spherical-gap
terminations, the red-shift saturates as the gap narrows24,50

toward the contact dsep = 0 limit, where the lowest energy LAP
mode for a single nanorod of length 2L is recovered.
We can observe more clearly the distinctive dispersion of the

lowest energy LAP as dsep → 0 in Figure 3 where the influence

of the gap morphology is emphasized. The diverging red-shift
for narrow spherical gaps strongly contrasts with the saturation
observed for the flat-gap antennas. To better show the trends,
we include in Figure 3 also classical results for very narrow gaps
up to dsep ≈ 0.1 nm, where electron tunneling can strongly
modify the plasmonic response (see below). We can under-
stand the saturation of the LAP by a simplified model that
reduces the antenna to a simple electric circuit in series,51−53

where the gaps are represented by a capacitance and the rods
by impedances. As the gap closes, the capacitance becomes
divergently large and the gap can be seen as a short-circuit that
does not affect the response, recovering the resonance of a
single rod of twice the length. A more detailed and quantitative
analysis is included as Supporting Information.

Remarkably, an additional set of modes is evident in the
near-field response of the flat-gap antennas in Figure 2d. These
modes (black lines) are spectrally narrow and exhibit a very
strong dependence on gap separation. They can be clearly
distinguished as strong enhancements for narrow nanometric
gaps and radiate only weakly,54,55 thus hardly affecting the
extinction cross-section in Figure 2b. We denote these
resonances as transverse cavity plasmons (TCPs) because
they can be understood as Fabry−Peŕot-like resonances47,56 of
cavity plasmons propagating along the gap cavity, similar to
those found in patch or related plasmonic resonators.22,57−60

The surface plasmons excited at the metal−insulator−metal gap
propagate parallel to the flat interfaces and reflect at the gap
edges,61 leading, due to coherent interference, to resonances
with characteristic standing-wave patterns.
An interesting property of the TCPs in our structures is that

they interact only weakly with the lowest-energy LAP mode:
indeed any possible anticrossing of TCPs and this LAP mode is
lifted (and therefore observed as a crossing) because the losses
of the modes are larger than the interaction strength. This
property suggests that the LAP and the TCPs can be tuned
independently by changing the geometry of the antenna arms
or by altering the gap morphology. The excitation of the two
states during the crossing of the TCP and LAP modes results in
strong near-field enhancement when both overlap spectrally. It
thus appears possible to tune the resonant energy of a TCP by
a convenient cavity design and, at the same time, to control the
strength of this mode by tuning the low-energy LAP mode via
the geometry of the rest of the antenna.
We notice that the saturation of the lowest energy

longitudinal mode LAP1 for the flat-gap antenna appears to
correlate with the crossing with the transverse cavity mode
TCP1. It would thus be tempting to ascribe this saturation to an
anticrossing behavior. However, we have extensively inves-
tigated the charge distributions around the crossing point in a
quasistatic approximation and find no evidence of the change of
mode symmetry one would expect from an anticrossing.

Longitudinal Antenna Plasmons and Transverse
Cavity Plasmons. We now discuss in more detail the nature
of the modes of the flat-gap antennas. For the present
geometry, all plasmon modes can be classified according to
their azimuthal symmetry m describing the variation of the
charge densities under rotation around the z axis. In the present
situation, only m = 0 and m = 1 modes play a role. The
longitudinal antenna modes (m = 0) of the single isolated rods
can be classified by l ≥ 1, where l is the number of nodes in the
charge distribution along the antenna axis (longitudinal
direction).15 Smaller l corresponds to lower energy (longer
wavelength) modes. The associated charge density patterns
resemble those of traditional linear antennas operating at much
lower frequencies.62 Similarly, the TCPs can be labeled by s ≥ 1
according to the number of charge nodes along the transverse x
axis parallel to the propagation direction of the incident light.
Odd s corresponds to m = 1 and even s to m = 0.
We summarize the evolution of the flat-gap LAPs and TCPs

as the gap separation is decreased in Figure 4a and illustrate
their corresponding symmetries in terms of l and s (m)
numbers in the schematics of Figure 4b. The low-order LAP1
(m = 0, s = 0) mode goes through a transition from the l = 1
modes of the individual rods when the gap separation is large,
to a l = 1 mode of the 2L full antenna after contact (see top
schematics of the charge densities in Figure 4b). This transition

Figure 3. Resonant wavelength as a function of gap separation dsep for
the lowest energy antenna mode (LAP) for both spherical (green) and
flat gaps (blue), corresponding to the rightmost white lines in Figure 2.

ACS Photonics Article

DOI: 10.1021/ph5004016
ACS Photonics 2015, 2, 295−305

297

http://dx.doi.org/10.1021/ph5004016


results in a significant red-shift of the plasmonic resonance, up
to the saturation occurring for very narrow gaps (Figure 3).
Similarly, the l = 2 mode of the single rods becomes the l = 3

LAP mode of the full antenna (LAP2, bottom schematics of the
longitudinal antenna modes in Figure 4b). As a general rule, the
l modes of the short antennas become the (2l − 1) LAP mode
of the large joined antenna. The spectral position of the l = 2, 3
modes at large distance and the corresponding (2l − 1)
resonance of the full structure after contact is very similar for
our system, so that the resulting spectral shift is small
(resonances at λ ≈ 340 nm and λ ≈ 280 nm). The l = 2 of
the individual rods at λ ≈ 340 nm are only excited due to their
mutual interaction, as they would otherwise be symmetry-
forbidden under the current illumination conditions.
To corroborate our understanding of the symmetry of the

longitudinal modes, we plot the near-field distribution of the
lowest energy LAP in Figure 5a,b for two separation distances.
The l = 1 field distribution shows the characteristics of a
bonding combination of individual rod dipolar modes
interacting at large separation distances (Figure 5a) and a l =
1 mode of the combined structure for narrow gaps (Figure 5b).
The TCP modes (black lines in Figure 4a) are characterized

by a strong dispersion with the gap separation. Many TCPs are
apparent in the near-field spectrum for very narrow (strongly
interacting) gaps. Each mode corresponds to different orders of
plasmonic Fabry−Peŕot-like cavity modes at the gap, as
depicted in the bottom schematics of Figure 4b, where the
charge density patterns of the (m = 1, s = 1) and (m = 0, s = 2)
modes are shown. These modes are strongly coupled within the
gap and are very weakly radiative. To illustrate the nature of the
TCPs, we plot in Figure 5c−f the spatial distribution of the
electric field amplitude in the middle gap plane (z = 0) for a
gap separation dsep = 0.5 nm and several orders of s. The field
distributions in Figure 5c−e correspond to s = 1, 2, 4,
respectively. As expected, clear standing-wave patterns typical
of transverse Fabry−Peŕot resonances can be observed. Higher
order TCPs reveal a progressively larger number of maxima and
minima that corresponds to an increasing cavity order s. For
example, Figure 5f corresponds to a large s value of ∼14,
illustrating the very fast spatial field variation of these high-
energy modes.

Figure 4. Schematic of the evolution of the modes in flat-gap antennas.
The top panel (a) shows the spectral evolution (extinction maxima) of
the LAPs (red) and the position of the s = 1, 2, 4, and 6 TCPs
predicted by the model in the text (black), consistent with the modes
obtained in Figure 2d. The charge distributions for the two lowest
energy LAPs (labeled LAP1, LAP2) and TCPs (TCP1, TCP2) are
sketched in (b), where we also classify them according to the
nomenclature (l; s, m) introduced in the text. The signs at the ends of
the rods refer to charges at the flat vacuum−metal interfaces, and those
along the rods to charges at the lateral side-walls. The symmetry of the
mode on the horizontal plane (s, m) does not depend on the gap
distance. All modes shown are rotationally symmetric except for the
TCP (m = 1, s = 1), for which we indicate explicitly how the charge
distribution relates to the direction of the incident light.

Figure 5. Normalized electric field |E/E0| in the (a, b) vertical plane (y = 0) and (c−f) horizontal xy plane at the gap center (z = 0) for the flat-gap
antenna. (a) dsep = 50 nm, λ = 575.5 nm, (b) dsep = 1 nm, λ = 807 nm, (c) dsep = 0.5 nm, λ = 1197 nm, (d) dsep = 0.5 nm, λ = 821.5 nm, (e) dsep = 0.5
nm, λ = 602.0 nm, (f) dsep = 0.5 nm, λ = 358.5 nm. These conditions are also indicated by the dots in Figure 2d. (a) and (b) correspond to the lowest
energy LAP and (c)−(f) to TCPs (m = 1, s = 1) and (m = 0, s = 2, 4, and ∼14). x, y, and z refer to the coordinate axes in Figure 1.
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Modes of even s correspond to rotationally symmetric fields
(m = 0), while modes with odd s also present a variation in the
xy plane in the azimuthal direction (m = 1). The latter
resonances are excited only due to retardation, which breaks the
symmetry between positive and negative x. Only the (m = 1, s =
1) odd mode exhibits a significant field enhancement in our
geometry. This (m = 1, s = 1) resonance should ideally show a
perfect antisymmetric field distribution with respect to the x =
0 plane but appears asymmetric due to the contribution to the
field from the relatively broad LAP1 mode and from
nonresonant contributions.63 Flat-gap antennas can also
support higher m modes corresponding to faster variations on
the azimuthal direction,58 but they do not seem to contribute to
the response in our scenario.
Traditionally, transverse modes in nanorods refer to modes

that are excited by a field polarized transversally to the nanorod
axis. The TCPs discussed here are transverse in the sense that
their surface charge distribution has significant variation with
nodes and antinodes in the transverse direction along the gap
faces. The even s TCPs cannot, by symmetry, be excited by a
transversely polarized field. They are only excited by a
longitudinal field. In that sense, they must evolve as the gap
closes from high-order longitudinal modes of the separated
nanorods. These TCPs become visible, among other factors,
because of the strong interparticle coupling for small gaps. The
coupling between the m = 0 TCP modes and the LAP modes
likely depends on the gap separation and the size of the
individual nanorods. The (m = 1, s = 1) TCP is constructed
from modes of the separated nanorods that are dark for both
transverse and longitudinal polarization, as observed from our
quasistatic calculations (not shown). Retardation effects turn
this TCP into a bright mode for longitudinal polarization but
remains dark for transverse polarization.
The relevant TCPs for different values of s (m = 0 and m =

1) can be described by a simple Fabry−Peŕot-like model. We
first obtain the plasmonic wavelength λpl of the cavity gap mode
propagating along a thin infinite vacuum gap layer between two
semi-infinite metallic slabs.56,64,65 When the equations of
propagation in this metal/insulator/metal system are solved
for a given incident wavelength λ and gap separation dsep, one
obtains:66
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which could straightforwardly be generalized to account for a
dielectric material in the gap by substituting the wavelength λ
and the permittivity in a vacuum with the respective values in
the dielectric. A TCP appears when the incident illumination
excites a plasmon with wavelength λpl that approximately
satisfies the quantization condition R′/λpl = s/4, which connects
λpl with the cavity radius R′ and the order s ≥ 1 of the cavity
mode. This quantization condition can be obtained by
considering a single gap plasmon that propagates in the
transverse x direction between the edges of the flat gap along a
diameter of length 2R′. A resonance occurs when the phase
accumulated by the plasmon after a full round trip is 2π times
the integer s order; (2π/λpl)4R′ = 2πs. Similar equations were
found for other plasmonic cavities, although an additional phase
term was often considered47,54,56,67,68 and more complex
equations have also been studied.60,69,70 The results of the
spectral position of the TCPs given by this simple analytical
model for s = 1, 2, 4, and 6 are superimposed to the calculated

field enhancement in Figure 2d as black solid lines. The
agreement between the positions of the TCPs as predicted
from the model and the calculations is remarkable and indeed
suggests a spectral decoupling of the two types of resonances.
Our simple model also explains the large sensitivity of the

TCP modes’ resonant frequency to the gap separation. In the
limit of no losses, λpl ≪ λ and εm/ε0 ≈ − λ2/λp

2; then eq 1 can
be reduced to λpl(1 + (λpl/λp)

2)1/2 ≈ πdsepλ
2/λp

2, where λp is the
plasma wavelength associated with ωp, λp = 2πc0/ωp, and c0 is
the speed of light in a vacuum. The resonant wavelength λres is
then found near λres ≈ λp(4R′/(πdseps))1/2[1 + (4R′/(sλp))2]0.25.
This expression shows that the resonant wavelength scales with
λres ∝ 1/√dsep as dsep → 0.
Although the length L of the rods critically affects the LAPs,

they do not appear in this simple model for the TCPs. Figure 6

emphasizes the very different effect of L on the two sets of
modes, for a narrow dsep = 0.5 nm gap. The far field in Figure 6a
shows LAPs that red-shift clearly as the length increases (green
lines) and that are also visible in the near field (Figure 6b). The
TCPs are identified by the narrow lines in the near-field
enhancement (Figure 6b), whose spectral position is, as
expected, essentially independent of the rod lengths (vertical
blue lines). In general, particularly large enhancements are
obtained for a given TCP (most notably for even TCPs), when
the LAP mode overlaps the TCP.
Figure 6 thus illustrates that it is possible to control the

strength of the TCPs, without affecting their spectral position,
by tuning the longitudinal antenna resonances through L.
Complementarily, Figure 2 showed how the gap separation
distance controls the resonant position of the TCPs but does
not influence the LAPs for narrow gaps.

■ SUBNANOMETER GAPS: THE TUNNELING REGIME
The results discussed up to now employed classical modeling of
the antenna response. However, when the distance of the gap
between the nanoantennas reaches subnanometric dimensions,
quantum effects71−73 such as tunneling of electrons through the
gap start to play an important role for the optical response of
the system.26−28,74 To model this effect, we use the recently
developed quantum corrected model32 within a local frame-
work. The QCM amounts to the insertion of an effective
material in the gap, with a conductance obtained from a
quantum mechanical calculation of the tunneling probability
across a metallic gap.32,41 The tunneling and thus the
conductivity of the associated effective material depend on
the distance between the opposite surfaces bridging the gap and
will vary laterally across a gap of arbitrary shape, depending on

Figure 6. (a) Extinction cross-section σext and (b) maximum near-field
enhancement at the central plane |Emax/E0| for flat-gap metallic
antennas, as a function of wavelength and length of the rods L. The
gap separation is dsep = 0.5 nm. The dotted lines are guides to the eye
indicating the evolution of some of the LAPs (oblique green lines) and
TCPs (vertical blue lines).
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the local separation distance at each point of the gap. The
QCM approach thus makes it possible to model the system
using a classical electrodynamical solver and account for
quantum mechanical electron tunneling effects.
In Figure 7 we plot the extinction cross-section for spherical-

gap antennas (Figure 7a,c) and flat-gap antennas (Figure 7b,d)

as a function of the gap separation and wavelength using both
classical (Figure 7a,b) and QCM (Figure 7c,d) calculations. As
tunneling only becomes significant for distances ≲0.5 nm,32 we
focus here on very narrow gaps of dsep < 1 nm. We also consider
negative separation distances, corresponding to the case of
overlapping antenna arms. A negative distance dsep corresponds
to separation L − |dsep| between the center of the two rods.
The classical results for the spherical case (Figure 7a) before

contact reproduces the behavior already observed in Figure 2a
for larger gap separations, emphasizing the divergent red-shift
of the different bonding modes as the gap closes. An unphysical
discontinuity is present at contact (dsep = 0), separating the
nontouching and the overlapping regimes.17 For dsep < 0 several
charge transfer plasmons18,75 (CTPs) appear in the spectrum,
blue-shifting with increasing overlap. The CTPs are plasmonic
modes that emerge when charges can be transferred from one
antenna arm to the other. The lowest energy CTP is excited at
a characteristic low energy.
The QCM results for the spherical-termination antennas

(Figure 7c) display trends consistent with previous work.26,28,76

Instead of a discontinuity at contact we find a gradual transition
between the nontouching and the overlapping regimes with a
distinctive change from modes that red-shift as the gap narrows
to modes that blue-shift with further decrease of dsep. The
change occurs near a threshold distance dth ≈ 0.2 to 0.3 nm that
can be understood as the separation where the amount of
charge being transported across the gap in a fraction of the
optical period is comparable to the charges induced at the metal
interfaces at the gap.18,27 For dsep ≳ dth the modes are
fundamentally the same as those obtained from the classical

calculations. For dsep ≲ dth, charge transfer is allowed and the
modes can be considered as CTPs even if physical contact has
not been established. For overlapping arms (dsep < 0), we
obtain significantly fewer CTPs in the presence of tunneling
compared to the classical results, which can be related to a
sof tening of the contact regions between the two rods due to
charge transfer in the quantum treatment.
The far-field spectra for narrow flat gaps in Figure 7b,d

behave very differently. The extinction cross-section calculated
using the classical and QCM approach is very similar and
insensitive to the gap separation. In both cases, the gap behaves
as a short circuit, and the response corresponds to that of a
single rod of approximate length 2L. In the classical case, this
short circuit is due to physical contact (dsep < 0) or to a large
capacitance (dsep > 0, see Supporting Information). In the
QCM electron tunneling just assists in reducing the gap
impedance for dsep > 0. To consider the gap morphology is thus
relevant to properly associate quantum effects such as tunneling
with a particular charge transfer modal structure.29

Figure 8 shows the maximum field enhancement |Emax/E0| for
both types of antennas as a function of the gap separation and

wavelength, for positive separation distances dsep > 0. The
classical results (Figure 8a,b) show the same tendencies as
those in Figure 2c,d for larger separation. In particular the
coexistence of TCPs and LAPs for flat gaps is apparent. The
field enhancement produced at the spherical gap is noticeably
larger than for the flat counterpart due to a more singular
concentration of the field in that geometry.
The QCM results in Figure 8c,d show that the electric fields

in the gap become quenched for gap separations below a few
ångstroms because of the onset of electron tunneling.26,76 The
charge transfer across the gap counteracts the strong charge
pile-up predicted by the classical description and short-circuits
the gap. The electric field quenching for flat-gap termination
(Figure 8d) occurs at longer separation distances than for the
spherical case. For flat gaps the quenching of the TCPs occurs

Figure 7. Extinction cross-section σext of metallic gap-antennas as a
function of the wavelength and gap separation dsep for (a, c) spherical
and (b, d) flat terminations obtained using (a, b) classical calculations
and (c, d) the QCM. Some longitudinal antenna plasmons (LAPs),
bonding dimer plasmons (BDPs), and charge transfer plasmons
(CTPs) are labeled in the plots. Linear separation distance scale is
used in all of these figures. Notice the logarithmic scale used for the
color coding in all the figures. Negative distances correspond to
overlapping structures.

Figure 8. Maximum electric field enhancement |Emax/E0| at the central
plane of a metallic antenna gap as a function of the illumination
wavelength and the separation distance, dsep, for (a, c) spherical and (b,
d) flat gaps obtained using (a, b) classical calculations and (c, d) the
QCM. Some of the longitudinal antenna plasmons (LAPs), bonding
dimer plasmons (BDPs), and transverse cavity plasmons (TCPs) are
labeled in the plots. Linear separation distance scale is used in all of
these figures. Notice the logarithmic scale used for the color coding in
all the figures.
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for gap separations of dsep ≈ 0.4 nm, while that for spherical
terminations at dsep ≈ 0.3 nm, predicting a large sensitivity of
the TCPs to tunneling. Thus, our results for flat narrow gaps
indicate that, although in this case the tunneling does not affect
the extinction cross-section, which is dominated by the global
current flow in the vertical direction, a quantum mechanical
description is essential for the modeling of the local charge
concentrations and thus the local field enhancements.

■ PHONONIC GAP-ANTENNAS: MORPHOLOGY
EFFECTS IN THE INFRARED

In flat metallic antennas a large number of cavity TCP modes
were predicted, but most of them emerged clearly only for very
narrow gaps of around 1 nm or less. Such narrow gaps were
also necessary to obtain the characteristic saturation behavior
with vanishing separation distance of the lowest energy antenna
LAPs. Despite significant recent experimental pro-
gress,15,21,27−29,77−82 fabrication of such narrow gaps remains
an experimental challenge. Furthermore, in realistic metals, the
influence of d-electrons can introduce significant losses for
frequencies near the surface plasmon resonance, with a
detrimental effect for the excitation of well-defined high-order
TCPs. Two possibilities to better access the TCPs are to use
wider metallic structures or to fill the gap with a dielectric
material that establishes a physical spacer.83−85

These challenges can be mitigated when the size of the
structures is scaled up to micrometer-sized dimensions. We
now analyze gap-antennas made of polar materials, such as SiC,
which support localized surface phonon-polariton resonances
that can be efficiently coupled to infrared (IR) radiation. The
behavior of phononic antennas in the infrared is analogous to
the plasmonic response of metallic antennas in the visible, since
the optical response of polar materials in a range of infrared
wavelengths is qualitatively similar to that of metals below the
plasma frequency.25,86−88

The optical permittivity of SiC εSiC can be modeled using a
Lorentz−Drude response, εSiC = ε0ε∞[1 + (ωl

2 − ωt
2)/(ωt

2 −
ω2 − iωΓ)], where ωl and ωt are the longitudinal and
transverse phononic angular frequencies, respectively.89,90 ε∞
sets the values at very large energies, and Γ describes the losses
in the material. For SiC we use89,91,92 ωl = 969 cm−1, ωt = 793
cm−1, ε∞ = 6.7, and Γ = 4.76 cm−1. The frequencies where
phononic antenna modes can occur are limited to the window
between ωl and ωt, where the real part of εSiC is negative.
Figure 9 shows full electromagnetic calculations of the

extinction (Figure 9a,b) and maximum near-field enhancement
|Emax/E0| at the central plane of the gap (Figure 9c,d) for SiC
antennas with spherical (Figure 9a,c) and flat (Figure 9b,d)
terminated gaps. As dsep is always relatively large, we can
disregard quantum effects.93 The morphology considered is the
same as for metallic antennas (Figure 1) after scaling up all the
dimensions of the rods by a factor of 15 (L = 1500 nm, R = 375
nm, and r = 30 nm). The SiC antenna is resonant at wavelength
≈ 11.5 μm, and thus the dimensions normalized by the
wavelength of the incident radiation are similar to those
considered for our metallic antennas. In general, we find very
similar trends to those for the metallic antennas. Since modes
for SiC are phononic rather than plasmonic, we will label them
using the previous scheme of notation but referring to the
different types of modes as phononic (Ph) instead of plasmonic
(P).
For spherical gaps, we observe, both in the far (Figure 9a)

and in the near field (Figure 9c), a set of phononic modes that

red-shift considerably as the gap separation decreases. The
near-field enhancement for short distances is very large. Since
the phononic modes are confined to a relatively narrow spectral
window (10.3 μm ≲ λ < ≲ 12.6 μm) where the real part of εSiC
is negative, the red-shift of the bonding modes does not diverge
for decreasing SiC gaps.
In contrast, for flat gaps, the red-shift of the broad

longitudinal antenna phononic LAPh1 mode that dominates
the extinction (Figure 9b) shows a clear saturation already for
dsep ≈ 10 nm and converges toward the l = 1 resonance of the
joint structure. The wavelength of the second-order extinction
peak at λ ≈ 10.9 μm is also weakly sensitive to dsep and
corresponds to the LAPh2 mode evolving from the l = 2 mode
of the individual rods. The LAPhs show also a clear signature in
the near-field spectrum, displayed in Figure 9d, where the
TCPhs emerge as an additional set of narrow peaks that
disperse strongly with separation distance and are very weakly
radiative (almost not distinguishable in the extinction
spectrum). In contrast to what was observed for the metallic
antennas, in the SiC antenna many TCPhs are clearly visible for
dsep around 10 nm. We note that as for the metallic antennas,
the saturation of the LAPh1 mode seems to coincide with its
crossing of the TCPh1 mode, but, as pointed out in the
plasmonic case, an analysis of the charge distributions of the
modes in the quasistatic approximation reveals no signs of an
anticrossing.
As the wavelength of the phononic modes in SiC is always

smaller than 12.6 μm (corresponding to ωt), at a distance of
about dsep ≈ 10 nm the strong red-shift with decreasing gap of
the lowest energy TCPs becomes less marked in comparison to
the diverging red-shift observed in Figure 2 for metallic
antennas. Nevertheless, as the distance decreases from
hundreds to tens of nanometers, the red-shift of the TCPhs
is very significant and also follows the Fabry−Peŕot-like
relationship R′/λph = s/4 with λph given by eq 1, as indicated

Figure 9. (a, b) Extinction cross-section σext and (c, d) maximum near-
field enhancement |Emax/E0| at the central plane of the gap for (a, c)
spherical-gap and (b, d) flat-gap antennas made with SiC, as a function
of wavelength and gap distance. The black lines in (d) correspond to
the expected position of the phononic analogue to the TCPs, here
denoted as TCPhs, with s = 1, 2, 4, 6 according to eq 1. Notice the
logarithmic scale used for the distances and for the color scale in all
figures. Some longitudinal antenna phononic modes (LAPh), bonding
dimer phononic modes (BDPh), and transverse cavity phononic
modes (TCPh) are indicated in the panels.
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by the black lines in Figure 9d. The phononic wavelength λph
should be used instead of the plasmonic λpl value and εSiC
instead of the εm, but otherwise the equation describing the
dispersion of the TCPhs remains the same. These results give
evidence that polar gap-antennas such as those made of SiC
could serve as candidates to control and tune separately cavity
and antenna modes to obtain large field enhancements.

■ SUMMARY AND DISCUSSION
We have studied in detail the behavior of metallic antennas with
very narrow flat gaps, contrasting it with the response for
spherical terminations at the gap. The behavior predicted for
the latter is similar to that for spherical particles, with a set of
bonding modes that strongly red-shift with narrowing gaps and
that determine both the near- and the far-field response.17 In
contrast, for the corresponding flat-gap antennas, we found two
different sets of modes,20,21,84 longitudinal antenna plasmons
and transverse cavity plasmons, which behave in fundamentally
different ways. The LAPs dominate the far-field response and
saturate spectrally for narrow gaps. The saturation of the LAP1
can be qualitatively modeled using a circuit model where a
capacitor represents the gap cavity. The TCPs are confined to
the gap between the flat antenna arms and are thus very
sensitive to separation distance dsep and can be described using
a simple Fabry−Peŕot-like model. The TCPs are essentially
dark modes94 and have a negligible effect on the far-field optical
properties. Both LAPs and TCPs contribute strongly to the
near-field response, i.e., the plasmon-induced electric field
enhancement. Most significantly, we find that the TCPs and the
LAPs can be tuned independently. As a consequence, the
spectral and spatial distribution of the near fields in the gap can
be tuned by changing the structure of the gap. We also
demonstrate the validity of these concepts for phononic SiC
antennas in the infrared. The dependence on the gap
morphology identified for metallic antennas is reproduced,
but here occurs for significantly wider gaps around 10 nm. The
strong dependencies on the gap morphology are also
manifested when electron tunneling is accounted for.
Significant differences in the influence of charge transfer on
the modal structure of charge transfer plasmons are found in
this case, a situation that needs to be considered when
interpreting molecular transport experiments dealing with the
quantum regime.29

The cavity modes can be supported by any plasmonic
junction with flat faces, assuming that the lateral dimensions of
the cavity are comparable to the plasmonic wavelength in the
gap and that the separation distance is relatively small. For
nearly flat gaps, even small variations of the gap separation
across the faces may suppress the formation of these modes or
confine them to particular regions of the gap. The responses for
flat and spherical gaps are thus qualitatively different and
cannot be explained simply by a stronger interaction in the flat
configuration due to the larger amount of material near the gap.
Our results could contribute to an explanation of many

discrepancies and inconsistencies in experiments that are
sensitive to the fine details of the morphology of a plasmonic
nanocavity. Morphological changes of the cavities at the
nanometric level can significantly modify the performance of
a particular optoelectronic process at the plasmonic interface,
potentially explaining the often encountered variability in
experimental results. Well-reproduced cavities are thus key to
produce systematic experimental output.95 Notably, the exact
field distribution in a plasmonic cavity determines the

performance of many field-enhanced spectroscopies, such as
in tip-enhanced Raman spectroscopy (TERS)96,97 and of
scattering-type scanning near-field optical microscopy (s-
SNOM).98 The variation of the morphology of the tip-on-
substrate cavities in these spectroscopies can indeed explain the
large tip to tip dependencies in signal quality and spectral
behavior often found in experiments.99 Similarly, modifications
of the gap can also determine the yields and properties of many
optoelectronic processes such as in photoemission100,101 or in
nonlinear plasmonics.102

However, the sensitivity to fine details of the cavity, even
reaching down to atomic-scale variations within the gap, is not
always detrimental. If controlled, as for example in a particle-
on-mirror geometry, the dependence on the faceting can serve
as an optical monitor of complex photochemical processes85 or
to trace transport properties at optical frequencies,29,103 thus
allowing access to information that cannot be reached by other
techniques.
Our results stress the importance of the morphology of the

gap for applications in nanophotonics. The independent
control of the two types of modes, as introduced here, provides
a valuable means to engineer the far-field and near-field
properties separately. Flat-gap termination antennas may find
applications beyond the manipulation of light under plane-wave
illumination. The spatial field distribution observed for the
different cavity modes, often with closely spaced maxima and
minima, may be interesting for controlling the coherent
interaction between different emitters in a gap, with potential
application in energy transfer104,105 or quantum information
involving plasmonic states.106 The faceted gap geometry may
be also an adequate morphology to achieve strong coupling
with self-assembled molecules107,108 extended over the entire
gap. The possibilities of the versatile flat-gap morphology could
thus open new venues for simultaneous and independent
control of the near-field and far-field responses in nano-
photonics.
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(42) Garcıá de Abajo, F. J.; Howie, A. Retarded field calculation of
electron energy loss in inhomogeneous dielectrics. Phys. Rev. B 2002,
65, 115418.

ACS Photonics Article

DOI: 10.1021/ph5004016
ACS Photonics 2015, 2, 295−305

303

http://dx.doi.org/10.1021/ph5004016


(43) Xu, H.; Aizpurua, J.; Kal̈l, M.; Apell, P. Electromagnetic
contributions to single-molecule sensitivity in surface-enhanced Raman
scattering. Phys. Rev. E 2000, 62, 4318−4324.
(44) Nordlander, P.; Oubre, C.; Prodan, E.; Li, K.; Stockman, M. I.
Plasmon hybridization in nanoparticle dimers. Nano Lett. 2004, 4,
899−903.
(45) Lebedev, V.; Vergeles, S.; Vorobev, P. Giant enhancement of
electric field between two close metallic grains due to plasmonic
resonance. Opt. Lett. 2010, 35, 640−642.
(46) Ditlbacher, H.; Hohenau, A.; Wagner, D.; Kreibig, U.; Rogers,
M.; Hofer, F.; Aussenegg, F. R.; Krenn, J. R. Silver Nanowires as
Surface Plasmon Resonators. Phys. Rev. Lett. 2005, 95, 257403.
(47) Novotny, L. Effective wavelength scaling for optical antennas.
Phys. Rev. Lett. 2007, 98, 266802.
(48) Bryant, G. W.; García de Abajo, F. J.; Aizpurua, J. Mapping the
plasmon resonances of metallic nanoantennas. Nano Lett. 2008, 8,
631−636.
(49) Dorfmüller, J.; Vogelgesang, R.; Khunsin, W.; Rockstuhl, C.;
Etrich, C.; Kern, K. Plasmonic nanowire antennas: experiment,
simulation, and theory. Nano Lett. 2010, 10, 3596−3603.
(50) Fischer, H.; Martin, O. J. F. Engineering the optical response of
plasmonic nanoantennas. Opt. Express 2008, 16, 9144−9154.
(51) Alu,̀ A.; Engheta, N. Input impedance, nanocircuit loading, and
radiation tuning of optical nanoantennas. Phys. Rev. Lett. 2008, 101,
043901.
(52) Alu,̀ A.; Engheta, N. Tuning the scattering response of optical
nanoantennas with nanocircuit loads. Nat. Photonics 2008, 2, 307−310.
(53) Locatelli, A.; De Angelis, C.; Modotto, D.; Boscolo, S.;
Sacchetto, F.; Midrio, M.; Capobianco, A.-D.; Pigozzo, F. M.; Someda,
C. G. Modeling of enhanced field confinement and scattering by
optical wire antennas. Opt. Express 2009, 17, 16792−16800.
(54) Yang, J.; Sauvan, C.; Jouanin, A.; Collin, S.; Pelouard, J.-L.;
Lalanne, P. Ultrasmall metal-insulator-metal nanoresonators: impact of
slow-wave effects on the quality factor. Opt. Express 2012, 20, 16880−
16891.
(55) Kwon, S.-H. Deep subwavelength plasmonic whispering-gallery-
mode cavity. Opt. Express 2012, 20, 24918−24924.
(56) Bozhevolnyi, S. I.; Søndergaard, T. General properties of slow-
plasmon resonant nanostructures: nano-antennas and resonators. Opt.
Express 2007, 15, 10869−10877.
(57) Jung, J.; Søndergaard, T.; Bozhevolnyi, S. I. Gap plasmon-
polariton nanoresonators: scattering enhancement and launching of
surface plasmon polaritons. Phys. Rev. B 2009, 79, 035401.
(58) Kuttge, M.; García de Abajo, F. J.; Polman, A. Ultrasmall mode
volume plasmonic nanodisk resonators. Nano Lett. 2010, 10, 1537−
1541.
(59) Lassiter, J. B.; McGuire, F.; Mock, J. J.; Ciracì, C.; Hill, R. T.;
Wiley, B. J.; Chilkoti, A.; Smith, D. R. Plasmonic waveguide modes of
film-coupled metallic nanocubes. Nano Lett. 2013, 13, 5866−5872.
(60) Minkowski, F.; Wang, F.; Chakrabarty, A.; Wei, Q.-H. Resonant
cavity modes of circular plasmonic patch nanoantennas. Appl. Phys.
Lett. 2014, 104, 021111.
(61) Gordon, R. Light in a subwavelength slit in a metal: propagation
and reflection. Phys. Rev. B 2006, 73, 153405.
(62) Balanis, C. A. Antenna Theory. Analysis and Design; John Wiley &
Sons, Inc.: Hoboken, 2005.
(63) Le, F.; Brandl, D. W.; Urzhumov, Y. A.; Wang, H.; Kundu, J.;
Halas, N. J.; Aizpurua, J.; Nordlander, P. Metallic nanoparticle arrays: a
common substrate for both surface-enhanced Raman scattering and
surface-enhanced infrared absorption. ACS Nano 2008, 2, 707−718.
(64) Miyazaki, H. T.; Kurokawa, Y. Squeezing Visible Light Waves
into a 3-nm-Thick and 55-nm-Long Plasmon Cavity. Phys. Rev. Lett.
2006, 96, 097401.
(65) Park, J.; Kim, H.; Lee, I.-M.; Kim, S.; Jung, J.; Lee, B. Resonant
tunneling of surface plasmon polariton in the plasmonic nano-cavity.
Opt. Express 2008, 16, 16903−16915.
(66) Dionne, J. A.; Sweatlock, L. A.; Atwater, H. A.; Polman, A.
Plasmon slot waveguides: towards chip-scale propagation with
subwavelength-scale localization. Phys. Rev. B 2006, 73, 035407.

(67) Søndergaard, T.; Beermann, J.; Boltasseva, A.; Bozhevolnyi, S. I.
Slow-plasmon resonant-nanostrip antennas: analysis and demonstra-
tion. Phys. Rev. B 2008, 77, 115420.
(68) Barnard, E. S.; White, J. S.; Chandran, A.; Brongersma, M. L.
Spectral properties of plasmonic resonator antennas. Opt. Express
2008, 16, 16529−16537.
(69) Filter, R.; Qi, J.; Rockstuhl, C.; Lederer, F. Circular optical
nanoantennas: an analytical theory. Phys. Rev. B 2012, 85, 125429.
(70) Cirací, C.; Britt Lassiter, J.; Moreau, A.; Smith, D. R. Quasi-
analytic study of scattering from optical plasmonic patch antennas. J.
Appl. Phys. 2013, 114, 163108.
(71) Jacob, Z.; Shalaev, V. M. Plasmonics goes quantum. Science
2011, 334, 463−464.
(72) Tame, M. S.; McEnery, K. R.; Özdemir, S. K.; Lee, J.; Maier, S.
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